

ERVO 12th June 2024

First Results and Update

Science for sustainable seas

Working Group on Greening the Research Fleet

ICES organizational structure

Council

Governing body of ICES with 2 delegates from each of the member countries

Advisory (ACOM)

Committees

Science (SCICOM)

1 member from each member country

1 member from each member country

Expert groups

Experts populate working groups and workshops that address the following areas:

Aquaculture

Data Science and Technology

Ecosystem Observation

Ecosystem
Processes and
Dynamics

Fisheries Resources Human Activities, Pressures and Impacts Integrated Ecosystem Assessments

Secretariat

Provides logistic, administrative, scientific, and data handling support to ICES community.

WGGRF

Working Group on Greening the Research Fleet

- Start 05/2023
- 3 years terms
- 17 members
- 9 nationalities

ICES Science Plan

Seven interrelated scientific priorities

Ecosystem science

Provide evidence to **inform** policy developers as they seek set objectives and to address and reconcile use and nd society conservation of the sea.

Understanding pressures through shipping on ecosystems and the environment.

Impacts of human activities

Observation and exploration

Horizon scan of new and emerging techniques technologies andnse potentially progressing the ICES vision and mission.

Develop and apply a wide range of analytical and statistical tools (...) to describe (...) the distribution and dynamics of human activities and their strengths assess and weaknesses.

Seafood production

Emerging techniques and technologies

Analyze and test (...) logistical aspects of survey design to increase the efficiency, scope and accuracy of monitoring.

ICES WGGRF: Our Terms of Reference

ToR a

Task: collect fleet baseline emission and consumption data.

Deliverable:

how to assess emissions of a vessel

ToR b

Task: review of IMO and other regulation with relevance for RVs.

Deliverable:

Report or technical paper

ToR c

Task: draft
voluntary
agreement for
RV operators

Deliverable: Draft to ICES

ToR d

Task: identify and publish best practise for NBs and retrofits

Deliverable:

Technical paper, poster, manuscript

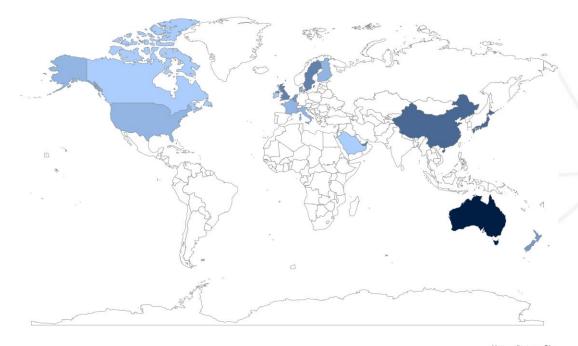
ToR e

Task: identify best practise for low-emission ops incl. autonomus systems

Deliverable:

Technical paper, poster, manuscript

First Results: Fleet Baseline Data Evaluation, Stakeholder Survey and Trends in the Maritime Industry

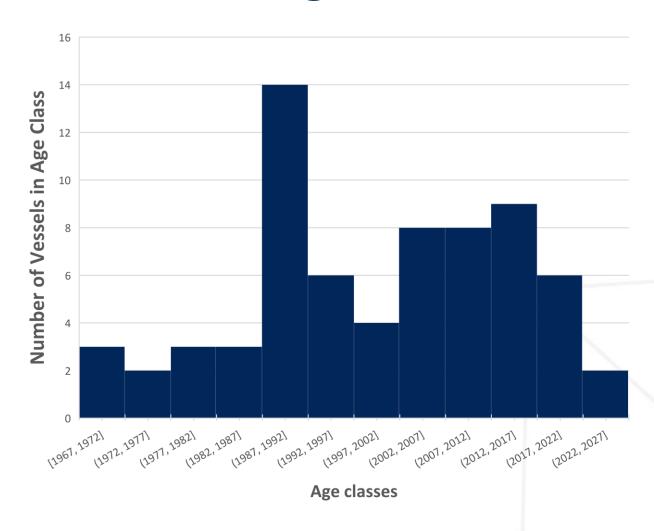


Collected from 68 vessels from 13 countries (status 10/23):

- (1) Vessel particulars
- (2) Vessel operational data
- (3) Consumption data
- (4) Emission data: globally calculated using wtw emission factors
- (5) Exhaust treatment
- (6) Environmental measures taken
- (7) Technical data: IHS

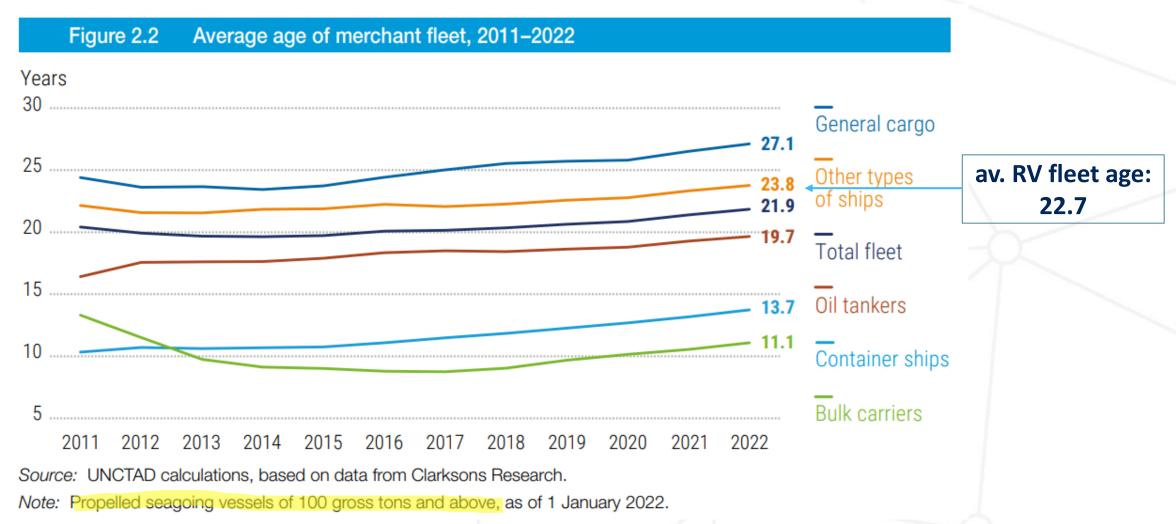
IRSO-Workshop: Stakeholder Survey

(16th Oct. 2023, Slido Polls)



Country	Number of Participants
Sweden	4
China	5
United Arab Emirates	4
France	2
Australia	8
United Kingdom	4
Belgium	3
Japan	5
Italy	2
Saudi Arabia	1
Denmark	2
Netherlands	3
Canada	1
Finland	2
USA	2
New Zealand	3
Ireland	1
Global	1
Total	53

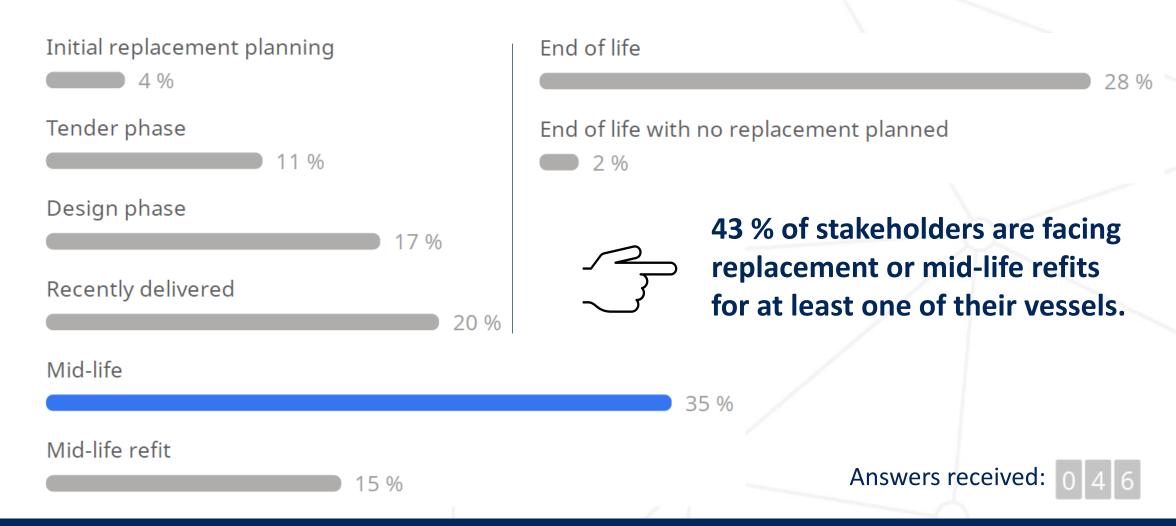
RV-Fleet: Age distribution


	Age [years]
Research Vessel age (average)	22,7
Expected age on replacement (av.)	36,5
Vessel Class Large (> 80 m)	19,8
Vessel Class Medium (40 - 80 m)	23,5
Vessel Class Small (< 40 m)	21,5

→ Fleet renewal rate:

Approximation using a 1:1 replacement assumption: av. **3,8 % renewal rate** anticipated during 2021 - 2030

RV-Fleet: Comparison to Merchant Fleet



RV Fleet Status and Operational Information

What Life Cycle Stage is your RV currently in? [Multiple Choice (multiple answers)]

RV Fleet Status and Operational Information

In your opinion, what is the most pressing topic in RV shipping today? [Word Cloud]

Crew retention , greening the fleet, costs Reducing the environmental footprint

GHG emissions Crewing fuel underwater radiated noise

Budget Environmental impact environmentally friendly

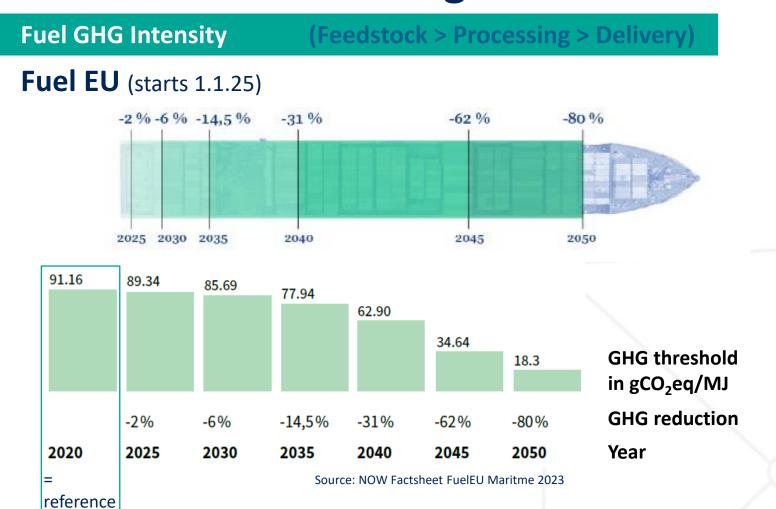
Shared use

Integration AI Funding SAFETY
safety operation Safety operation SAFETY

Corrosion

Funding for running the ship

Cooperation, youth engagement, sustainability



Sustainability Aspect: Greenhouse Gas (GHG) Emissions

Regulatory developments: EU: Taxation through FuelEU and ETS

58,50 € per GJ or 2.400 € / ton VLSFO energy equivalent

Taxation of compliance deficit:

based on

VLSFO

Emission costs

(tailpipe CO₂e)

EU ETS (running since 1.1.24)

Anticipated EUA (= 1 ton CO₂e) price development:

Year	€/EUA	Year	€ / EUA
30.5.2024	72	2035	173 - 194
2025	80 - 104	2040	
2030	136 - 160	- 2050	366 – 400+

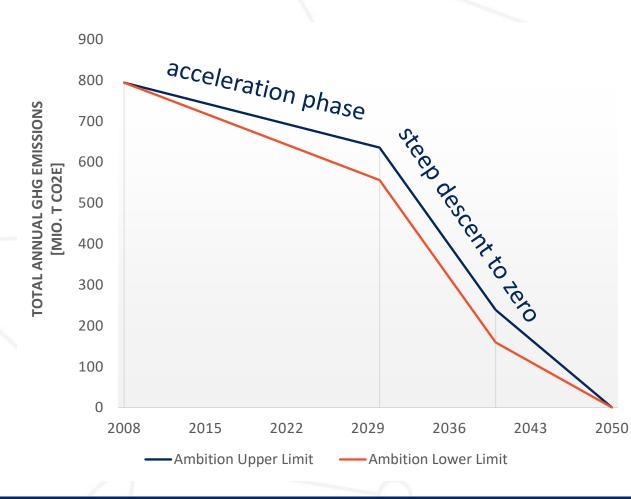
Sources: BloombergNEF - EU ETS Market Outlook 1H 2024; London Stock Exchange Group, 2023; Pietzcker et al., 2021

$$[cf (MDO)_{wtw} = 3,876 mt_{CO2} / mt_{MDO}]$$

- \rightarrow From 2026: more GHG covered, i.e. CH₄, N₂O
- → From 2027: several vessel types ≥ 400 GT to be included

Science for sustainable seas

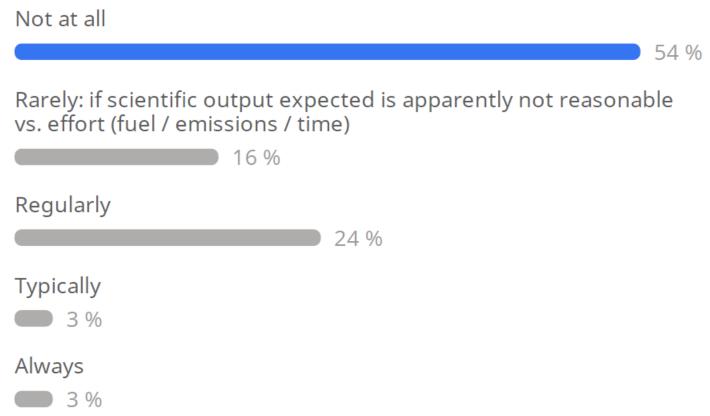
IMO: near net zero ambitions 2050


2023 IMO Strategy on Reduction of GHG from Ships (MEPC.377(80))

Ambitions

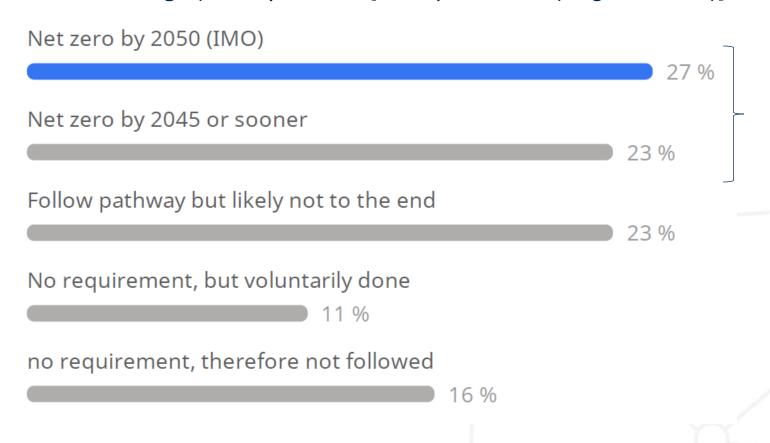
(1) Total annual GHG emission reduction envisaged:

20-30 % vs. 2008 by 2030 70-80 % vs. 2008 by 2040 near 100% by 2050


- (2) Uptake of at least 5%, striving for 10 % of zero or near zero GHG energy sources by 2030.
- (3) GHG emissions per transport work: 40% by 2030 vs. 2008

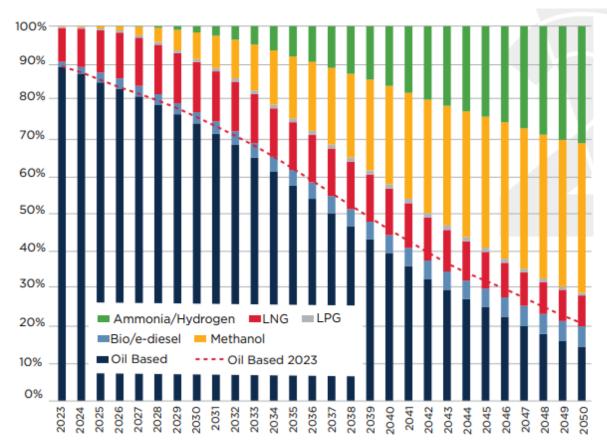
RV Fleet Status and Operational Information

Do you consider GHG emissions for the planning of scientific activities? [Multiple Choice (single answer)]



Greening the Research Fleet: Plans and Ambitions

Are you planning to follow IMOs trajectory to near net zero by 2050 (or a more ambitious target) with your RV? [Multiple Choice (single answer)]


50 % with IMO or even higher ambition!

Refit and newbuilding activity in merchant shipping – Energy Carriers

■ Methanol ■ Ammonia ■ Hydrogen ■ Ethane ■ Biofuel 400 350 300 /essels 250 Number of 200 150 100 50 Bulkers Tankers Containerships LNG LPG General Ro/ro Passenger Carriers /PCCD Carriers Cargo /Cruise

Figure 2.34: Fuel mix (HFO equivalent).

Ship types included: oil and chemical tankers, dry bulk carriers, containerships, LPG, LNG, car carriers, general cargo, ro/ro, ro/pax and cruise.

Figure 3.11: Orderbook by fuel type.

(Source: Clarksons Research, World Fleet Register, April 2024)

Source: ABS (2024) Beyond the Horizon. Orderbook tables based on Clarksons, April 2024

ource: ABS (2024) Beyond the Horizon.

Refit and newbuilding activity in merchant shipping – Uptake of Energy Efficiency Technology

Existing Fleet				
Rank	Energy Efficiency Technology	% All ship types		
1	Rudder Bulb	4,0		
2	Propeller Duct	3,7		
3	Stator Fin / Pre Swirl	3,1		
4	Bow Enhancement	2,4		
5	Propeller Boss Cap Fin	2,4		
6	Hull Fin	1,1		
7	Wake Equalizing Duct	0,5		
8	Rudder Fin	0,4		
9	Air Lubrication	0,3		
10	Solar Panel	0,1		
	()			
	Total	11,7		

Orderbook (04/2024)			
Energy Efficiency Technology	% All ship types		
Rudder Bulb	16,3		
Bow Enhancement	15,9		
Stator Fin / Pre-Swirl	11,8		
Air Lubrication System	6,4		
Propeller Boss Cap Fin	5,6		
Propeller Duct	4,6		
Hull Fin	3,0		
Solar Panel	1,4		
Rudder Fin	1,3		
Waste Heat Recovery System	1,1		
Wind: Suction Wing	0,6		
()			
Total	37,4		
	Energy Efficiency Technology Rudder Bulb Bow Enhancement Stator Fin / Pre-Swirl Air Lubrication System Propeller Boss Cap Fin Propeller Duct Hull Fin Solar Panel Rudder Fin Waste Heat Recovery System Wind: Suction Wing ()		

Greening the merchant shipping: Refit, Retrofits and Newbuilding drivers

Efficiency Gains

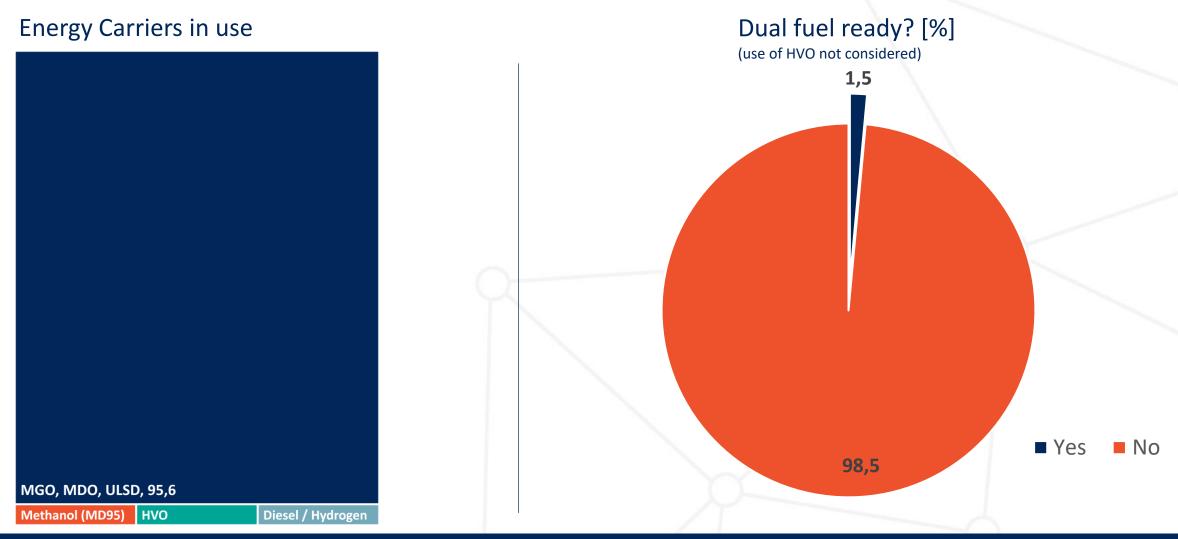
- Reduction of Energy Demand
- Increase of transport work by energy used [gram CO2 / t mile] (economies of scale)
- broader lender base for green assets (i.e. exceeding EEOI, EEXI, EU Taxonomy)

Regulatory Compliance

- Possibility to avoid GHG taxation / penalization over vessel lifetime
- Anticipation of upcoming IMO or local requirements
- Enable pooling / banking of compliance surplus

Other Benefits

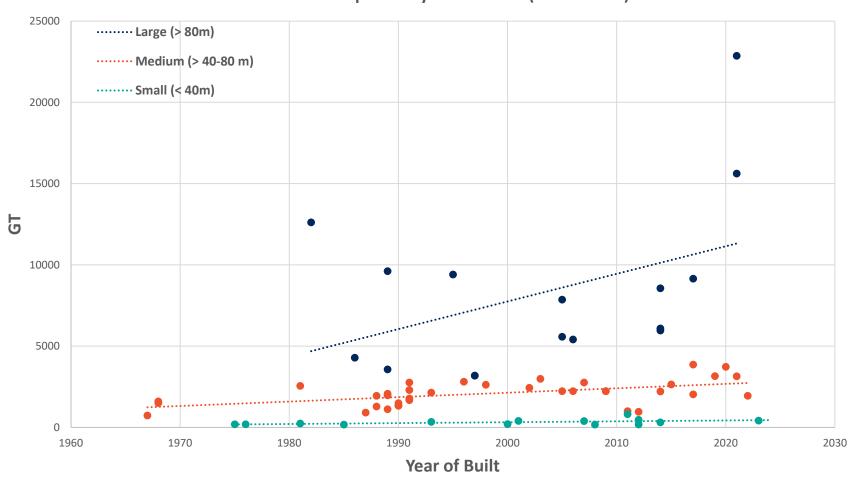
- Underperforming fleet (compliance deficit) may be compensated (at least in the acceleration phase)
- Freight increase through proactive cargo owners (i.e. COZEV, ZEMBA)
- Resilience towards fuel price hikes
- Meeting requirements from ESG (i.e. CSRD, ESRS) reporting
- Company reputation


Challenges

- Fuel availability, especially e-fuels (RFNBO)
- Small players have substantial disadvantage to access and contract limited fuel resources.
- Technical requirements for uptake of new technologies often not mature.
- Use of ETS funds not controllable.
- Uncertainty on when CO2 costs from smaller ships (< 5000 gt) are being internalized (EU)
- Fuel EU and EU ETS are not compatible but complementary instruments

Source: https://deal.town/gcaptain/gcaptain-daily-your-daily-maritime-news-F3VAYMFZE

Energy Carriers used in the RV-Fleet



RV-Fleet: Vessel Size (GT) trends

RV Size Development by Vessel Class (1968 - 2023)

Where has GT increment been going to?

- (1) Higher relative volume of enclosed spaces?
- (2) Safety / Stability?
- (3) Research capabilities?
- (4) ...

Greening the Research Fleet: Plans and Ambitions

Greening the research fleet: what measures are you currently taking or considering to take in the nearby future to reduce GHG emissions / carbon intensity of your operation? [Multiple Choice (multiple answers)]

Please see following page

Greening the Research Fleet: Plans and Ambitions

In your opinion: What scientific disciplines / devices / means on a RV do you associate with a GHG reduction potential? [Word Cloud]

Reduction of speed, more efficient voyage planning

Autonomous technology

Autonomous

AUV

Power AI Propulsion Alternative power Seismic survey

slower steaming productive

Clusteringtransit Autonomy

Robotic vehicles

Renewable fuel

mechenical or enegy

science AUV/ASV

reduce

Engine Hybrid AUVS

Alternate power

autonomous vehicules

Using usvs to support mothership

Greening the research fleet

Regulatory Requirements

- Part of RVs are **excluded from regulatory framework** (i.e. state owned vessels) or do not fall under requirements yet due to size (gt).
- Applicability depending on ownership / ISM Manager / nature of work (chartered out etc.) / decarbonization targets
- National ESG / CSRD reporting may apply for the institute. RVs are a major contributor to an institutes' Scope 1 emissions (estimate 70 80 %)

Compliance Benefits

- Anticipation of upcoming IMO or local requirements
- Resilience towards fuel price hikes
- Meeting requirements from ESG (i.e. CSRD, ESRS) reporting
- Institute reputation / public perception

Challenges

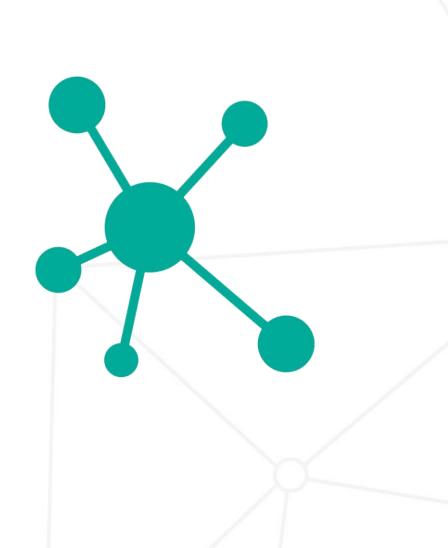
- Added compliance cost (mandatory or voluntary) cannot be transferred to multiple stakeholders.
- Justification of added fuel costs as a large contributor to operating costs
- Fuel availability: matching (remote) operating area and green fuel availability.
- Multirole capabilities hampers possible efficiency gains (bubble sweepdown vs. energy efficient ice breaking)
- Whats an appropriate efficiency indicator for research vessel work?
- Technical requirements for uptake of new technologies often not mature.
- Uncertainty on when CO2 costs from smaller ships (< 5000 gt) are being internalized (EU)

ICES WGGRF Outlook

- 1.) ICES-Report on "How to assess emissions of a vessel" covering fleet status overview
- 2.) ICES Report or technical paper on relevant regulations, gaps and compliance difficulties
- 3.) First draft of a **voluntary agreement** between RV operators

Expected for 2025:

- 4.) Best practise and general recommendations for new builds and refits.
- 5.) Best practise and general recommendations for low emission operation.



BREMERHAVEN

Christian Freudinger Barkhausenstraße 2 Project Manager Sustainability Fax +49 471 4831-1063

M.Sc., Grad.-Eng. Time Port II, Project Polarstern II 27568 Bremerhaven / Germany Project Office Shipbuilding Phone +49 471 4831-2253 Mobil +49 170 6596589 christian.freudinger@awi.de www.awi.de

Science for sustainable seas

